MPU6050 Interfacing with Raspberry Pi using ‘C’

Introduction:

  • MPU6050 sensor module is an integrated 6-axis Motion tracking device.
  • It has a 3-axis Gyroscope, 3-axis Accelerometer, Digital Motion Processor and a Temperature sensor, all in a single IC.
  • It can accept inputs from other sensors like 3-axis magnetometer or pressure sensor using its Auxiliary I2C bus.
  • If external 3-axis magnetometer is connected, it can provide complete 9-axis Motion Fusion output.
  • A microcontroller can communicate with this module using I2C communication protocol. Various parameters can be found by reading values from addresses of certain registers using I2C communication.
  • Gyroscope and accelerometer reading along X, Y and Z axes are available in 2’s complement form.
  • Gyroscope readings are in degrees per second (dps) unit; Accelerometer readings are in g unit.

For more information about MPU6050 Sensor Module and how to use it, refer the topic MPU6050 Sensor Module in the sensors and modules section.

Read More

Adding USB Attached GPS to your Raspberry Pi Projects

This quick learning guide will show you everything you need to do to add position tracking to your Pi project using the open source GPS daemon ‘gpsd’ and an inexpensive USB to TTL adapter cable or via direct-wiring to the built-in Pi UART pins

Please note this guide installs a system service called gpsd which you can then query for data. You may be better off just using pure python to read data from the GPS, its less complex in many cases

Read More

Build a Stratum 1 NTP (Time) Server

The Raspberry Pi Model B was released in 2012 and, since then, a number of useful applications regarding this device have ensued. However, one particular application that is seldom overlooked when dealing with the Raspberry Pi is its ability to be used as a Stratum 1 NTP server and allow you to synchronize clocks across networks like the Internet. For me, this useful trick has actually made my entire office far more efficient. 

Read More

7-segment Display Modules and the Raspberry Pi

7 segment displays are a well established way of electronically displaying numbers and a small set of letters. They’ve been around for as long as I’ve been playing with electronics but were a pain to wire up given the number of LEDs involved.

Luckily things are a lot easier now that they are available on pre-made modules that uses an SPI interface. This is easy to setup and use on the Raspberry so for about £3 you can add a strip of 8 7 segment digits.

Read More

BME280 I2C Temperature and Pressure Sensor

The BME280 device is a digital barometric pressure sensor and is a slightly upgraded version of the BMP180. This is available on a small module which provides access to the sensor via the I2C interface. This allows us to easily connect it to the Raspberry Pi and read the data using Python. The BME280 provides temperature, pressure and humidity.

The BME280 is made by Bosch and the official BME280 datasheet includes all the technical details. Their device can offer both SPI and I2C interfaces so you need to make sure your module provides the interface you prefer.

My module is a small pcb measuring 14x10mm with a 4 pin I2C header. The order of the pins may vary on other modules so keep an eye on the labels so you connect up the correct wires from the Pi.
Read More

Do NOT follow this link or you will be banned from the site!